Wavelet Fusion: a Tool to Break the Limits on LMMSE Image Super-Resolution
نویسندگان
چکیده
This paper presents a wavelet-based computationally efficient implementation of the Linear Minimum Mean Square Error (LMMSE) algorithm in image super-resolution. The image super-resolution reconstruction problem is well-known to be an ill-posed inverse problem of large dimensions. The LMMSE estimator to be implemented in the image super-resolution reconstruction problem requires an inversion of a very large dimension matrix, which is practically impossible. Our suggested implementation is based on breaking the problem into four consecutive steps, a registration step, a multi-channel LMMSE restoration step, a wavelet-based image fusion step and an LMMSE image interpolation step. The objective of the wavelet fusion step is to integrate the data obtained from each observation into a single image, which is then interpolated to give a high-resolution image. The paper explains the implementation of each step. The proposed implementation has succeeded in obtaining a high-resolution image from multiple degraded observations with a high PSNR. The computation time of the suggested implementation is small when compared to traditional iterative image super-resolution algorithms.
منابع مشابه
Fusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کاملModeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)
Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and land surface temperature (LST) calculation. However, their spatial resolu...
متن کاملImage Resolution Enhancement by Wavelet Transform Based Interpolation and Image Fusion
This paper presents a resolution method for enhancing digital gray images. The proposed enhancement technique is based on the interpolation of the high frequency sub-bands obtained by DWT and SWT. The proposed technique uses DWT to decompose an image into different sub-bands, and then the high frequency sub-band images have been interpolated. The interpolated high frequency sub-band coefficient...
متن کاملWavelet Transformation
Wavelet transformation is one of the most practical mathematical transformations in the field of image processing, especially image and signal processing. Depending on the nature of the multiresolution analysis, Wavelet transformation become more accessible and powerful tools. In this paper, we refer to the mathematical foundations of this transformation. Introduction: The...
متن کاملImproving Super-resolution Techniques via Employing Blurriness Information of the Image
Super-resolution (SR) is a technique that produces a high resolution (HR) image via employing a number of low resolution (LR) images from the same scene. One of the degradations that attenuates performance of the SR is the blurriness of the input LR images. In many previous works in the SR, the blurriness of the LR images is assumed to be due to the integral effect of the image sensor of the im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJWMIP
دوره 4 شماره
صفحات -
تاریخ انتشار 2006